Estimating the unconfined compressive strength of carbonate rocks using gene expression programming
نویسندگان
چکیده
Conventionally, many researchers have used both regression and black box techniques to estimate the unconfined compressive strength (UCS) of different rocks. The advantage of the regression approach is that it can be used to render a functional relationship between the predictive rock indices and its UCS. The advantage of the black box techniques is in rendering more accurate predictions. Gene expression programming (GEP) is proposed, in this study, as a robust mathematical alternative for predicting the UCS of Iran’s carbonate rocks. The two parameters of total porosity and P-wave speed were selected as predictive indices. The proposed GEP model had the advantage of the both traditionally used approaches by proposing a mathematical model, similar to a regression, while keeping the prediction errors as low as the black box methods. The GEP outperformed both artificial neural networks and support vector machines in terms of yielding more accurate estimates of UCS. Both the porosity and the P-wave velocity were sufficient predictive indices for estimating the UCS of the carbonate rocks in this study. Nearly, 95% of the observed variation in the UCS values was explained by these two parameters (i.e., R =95%).
منابع مشابه
Prediction of Lightweight Aggregate Concrete Compressive Strength
Nowadays, the better performance of lightweight structures during earthquake has resulted in using lightweight concrete more than ever. However, determining the compressive strength of concrete used in these structures during their service through a none-destructive test is a popular and useful method. One of the main methods of non-destructive testing in the assessment of compressive strength...
متن کاملGenetic Programming Based Formulation to Predict Compressive Strength of High Strength Concrete
This study introduces, two models based on Gene Expression Programming (GEP) to predict compressive strength of high strength concrete (HSC). Composition of HSC was assumed simplified, as a mixture of six components (cement, silica fume, super-plastisizer, water, fine aggregate and coarse aggregate). The 28-day compressive strength value was considered the target of the prediction. Data on 159...
متن کاملReliability assessment of Needle Penetration Index for estimating compressive strength of some sedimentary rocks from the Qom Formation, Central Iran
In this paper, the needle penetrometer test was utilized to explore the reliability of the Needle Penetration Index (NPI) for estimating the Unconfined Compressive Strength (UCS) of sedimentary rocks including gypsum, marl, siltstone and sandstone collected from the Qom Formation. Following the UCS and NP test, regression analyses were carried out to control the predictive performances of NPI. ...
متن کاملThe Effect of Geopolymerization on the Unconfined Compressive Strength of Stabilized Fine-grained Soils
This study focuses on evaluating the unconfined compressive strength (UCS) of improved fine-grained soils. A large database of unconfined compressive strength of clayey soil specimens stabilized with fly ash and blast furnace slag based geopolymer were collected and analyzed. Subsequently, using adaptive neuro fuzzy inference system (ANFIS), a model has been developed to assess the UCS of stabi...
متن کاملPredicting Unconfined Compressive Strength of Intact Rock Using New Hybrid Intelligent Models
Bedrock unconfined compressive strength (UCS) is a key parameter in designing thegeosciences and building related projects comprising both the underground and surface rock structures. Determination of rock UCS using standard laboratory tests is a complicated, expensive, and time-consuming process, which requires fresh core specimens. However, preparing fresh cores is not always possible, especi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1602.03854 شماره
صفحات -
تاریخ انتشار 2015